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The problem of sensitivity analyses for mechanical systems with unilateral constraints is considered. The problem is formulated 
as one of computing the derivative, with respect to the vector of parameters, of a functional characterizing the motion. To compute 
the derivative, the adjoint variable approach is extended to systems with unilateral constraints. The set of active constraints may 
change in the course of the motion, with or without impact. Jump conditions for the adjoint variables are indicated for the times 
at which changes occur in the set of active constraints. As an example, a mechanical system whose motion is constrained by an 
absolutely elastic stop is considered. 0 2003 Elsevier Ltd. All rights reserved. 

Sensitivity analysis is used in problems which arise when it is desired to assess the influence of 
measurement errors or inaccuracies in estimates of external forces acting on real systems [l-3]. There 
are also applications of sensitivity analysis to projection problems, modelled either by systems of ordinary 
differential equations or by partial differential equations [l, 21. However, these applications are con- 
cerned mainly with problems without constraints or with bilateral constraints. At the same time, there 
is a large class of systems with unilateral constraints for which it seems interesting to use sensitivity 
analysis. The monographs [4, 51, which are devoted to systems with unilateral constraints, present 
examples of vibro-elastic systems, systems of cyclic automation [4], and systems that arise when solving 
problems in the dynamics of structures [5]. The most common sensitivity measure is the derivative with 
respect to a parameter of some functional that can be computed along the trajectories of motion of 
the system [3, 61. General approaches to the computation of such derivatives along trajectories of 
dynamical systems are known [7,8]. In this paper formulae are derived for the derivative of an integral 
functional which characterizes the sensitivity of a mechanical system with unilateral constraints in the 
case of the impact of the system against one constraint or release from the constraint. 

1. EQUATIONS OF MOTION 

Consider a system of ordinary differential equations describing the motion of a mechanical system with 
ideal unilateral holonomic constraints, confining our attention to finite inequality constraints 

Mcj = F(q, 4, t) + Gh, Q(q) 2 0, G = iM(q)/8q E R”‘“, t E [tl, T] (1.1) 

where q E R” is the vector of generalized coordinates, ME R” ” is the symmetric positive-definite matrix 
of the masses, F(q,& t) is the vector of forces, CD: R” + Ry is a continuously differentiable vector function 
whose components describe holonomic stationary unilateral constraints and h(t) is the vector of Lagrange 
multipliers. 

The Lagrange multiplier hi corresponding to the ith constraint satisfies the following complementarily 
condition [9, lo]. 

h,20, a-$20, h,a$ = 0 (1.2) 

We shall consider system (1.1) in the interval [ tl, T] as a composite or a system with variable structure. 
To that end, the whole interval is divided into subintervals 

[ti.fj+ll, j = 1,2,...,N-l, CN = T (I-3) 

within each of which the set of active constraints does not change. The union of these subintervals is 
the entire time interval [tl, T]. 
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To compute the trajectories of motion of the mechanical system, the correspondence between the 
sets of active constraints and the time subintervals (1.3) must be determined, and the conditions 
governing the relation between the values of the generalized velocities at the end-points of the 
subintervals (transition with or without impact) must be determined. To determine the equations of 
motion of system (l.l), that is, to indicate the set of active constraints in each subinterval, one generally 
uses a generalization of Gauss’s principle of least constraint [ 1 l] to systems with unilateral constraints 
[12], or considers the mechanical system as a system satisfying a complementarity condition [9, lo]. 

Gauss’s principle of least constraint leads to the optimization problem 

under constraints 

GTQ+GTcjtO (1.5) 
The solution of this quadratic programming problem with linear constraints satisfies the Kuhn-Tucker 
Theorem [13], whose geometrical meaning is that, for an optimal solution, the antigradient of a suitable 
minimization of the expression (1.4) may be expressed as a non-negative linear combination (& 2 0) 
with the sign of the columns of the matrix G corresponding to active constraints reversed. Consequently, 
the matrix G corresponding to the interval (1.3) may be obtained from the Kuhn-Tucker conditions. 
The Kuhn-Tucker system for a quadratic programming problem may be reduced to a linear comple- 
mentarity problem. Consequently, problem (1.4), (1.5) may be solved by using the procedures of [12, 
131. Complementarily problems are widely used to describe mechanical systems with unilateral 
constraints [lo, 12, 141. 

After determining the set of columns of the matrix G corresponding to a subinterval (1.3), it is 
convenient for the integration of Eqs (1.1) to exclude the multiplier 3L [15]. 

We will now consider the relation between the values of the generalized velocities of the mechanical 
system at the common end-point of two adjacent subintervals. The transition from one subinterval of 
the time of motion to another may be of either of two types: with or without impact. To obtaining defining 
relations in impact theory one most frequently makes use of Newton’s hypothesis [4, 161: the change 
in the normal component of the generalized velocity of colliding bodies depends only on their materials, 
not on the velocities, and satisfies the relation [4, 161 

gTcj(t’) = -egTcj(C) (1.6) 
where e is the coefficient of restitution of the velocity on impact, which varies from zero to unity, and 
g is the gradient of the equation of the constraint. 

The change in velocities on impact at time tk against a constraint satisfying condition (1.6) may be 
expressed in the form 

lj(tk+) = &)-(1 +e) gT4(Q -1 
-M g 
gTM-‘g 

(l-7) 

In the case of absolutely elastic impact (e = 1) this formula, for scleronomous systems with one 
unilateral constraint, is identical with formula (13.15) in [4]. 

Thus, the system considered in this paper may be classified as a mechanical system with unilateral 
constraints - inequality constraints on the generalized coordinates. At the impact times, the generalized 
coordinates of the system are continuous, but the generalized velocities experience jumps. When the 
generalized velocities change as a result of impact, their initial values for the appropriate subinterval 
(1.3) are evaluated using formula (1.7) depending on the assumptions adopted concerning the value 
of the coefficient e = 1. Within each subinterval (1.3) the system satisfies equations of motion of the 
form (1.1). 

2. SENSITIVITY ANALYSIS 

Sensitivity analysis will be carried out below for the case in which the mechanical system impacts one 
constraint and the case in which it is released from the constraint. We shall assume that the equations 
of motion of the system have been reduced to a first-order system of ordinary differential equations 
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and, for simplicity, that the time interval contains two instants at which the set of active constraints 
changes. We will write the equations of the motion in the form 

dxldt = fi(x, b), tiI t I ti+,, i = 1,2,3; x(tl) = x,, t4 = 7’ (2.1) 

where t2 and t3 are the times at which the set of active constraints changes, once without impact and 
once with impact, respectively; b = (b,, . . . 
XT = (q, g. 

, bN)T is the parameter vector. For this system obviously 

We will take as the measure of the sensitivity the value of the derivative of the integral functional 

T 

i2 = j-P(x(t), b)dt (2.2) 

with respect to the parameter b [2, 3, 61, which is evaluated using an approach developed in optimal 
control theory [7, 81. Formulae for the sensitivity analysis of systems with bilateral constraints were 
derived using this approach, e.g. in [6]. 

Suppose the value of the parameter vector b” is perturbed by a small quantity &b, where ]] lib 11 is a 
small quantity, and the trajectory x(t) is such that the set of active constraints changes at unspecified 
times t2 and t3. The times are determined by the conditions for the release from one of the constraints 
(t2) and impact against the other (t3). Then the equation in variations for 6x will be 

af. af, 
-$6x--&” = $86, te [t;, t;+l], i = 1,2,3 

where t 7 I + l(tT) is the left-hand (right-hand) limit of the time at which the set of active constraints changes. 
The adjoint variables v(t) will be given specified [7] as a solution of the boundary-value problem 

dv af: 

dr+ 
zw = -P,, ‘q(T) = 0 (2.4) 

whereh corresponds to the time subinterval and the jump conditions [17] for w[t] at t2 and t3 will be 
given below. 

Lagrange’s identity [7], used in deriving the formulae within the framework of the approach adopted 
here, will be written as 

(2.5) 

Since the vector x(tl) is specified and x(T) is free, it follows from the transversal&y conditions for 
functionals of type (2.2) [7] that @x ] T1 = 0. The identity (2.9, together with Eq (2.3) is used so that, 
in the expression for the derivative of the functional (2.2) with respect to the parameter b, terms 
containing the factor 6x will be expressed in terms of the corresponding terms with the factor 66. Namely, 
according to (2.3) and (2.4) equality (2.5) may be rewritten as 

T 

(2.6) 

We now obtain jump conditions [17] for the adjoint variables at times t2 and t3. Let 6t2 be the variation 
of the time t2 corresponding to variation of the parameter 6b. It then follows from the condition of 
continuity of the coordinates and velocities at the instant of release from the constraint that the following 
relations hold for the variation of the coordinates [7, 81 

wt3 = wt;) + (f,-f&2 (2.7) 

As remarked above, the subscripts 1 and 2 correspond to the subintervals of time in which the motion 
of the mechanical system is taking place. The released constraint is denoted by @j(q) = R(x). It is obvious 
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that, at least in a small neighbourhood of t2, we have the inequality d@jldt = RXfi > 0, where the subscript 
i corresponds to the subinterval of the time of motion. 

Using the first terms of the series expansion of the relation R(x(t; + St,)) = 0, we obtain [7] a relation 
between 6t2 and &x(t;). Substitution of this relation and formula (2.7) into Eq. (2.6) shows that the 
quantity 

vanishes to within the accuracy necessary for computing the derivative, provided [7] that 

wt;) = w&b 
(f, -f2, w3, 

R f * 
x I 

The specific notation (2.9) of the jump conditions [17] for y(t:) is particularly convenient, since 
it explicitly defines the passage from y(ti) to y(t;) in integration from right to left [7]. 

We will now derive a jump condition for the adjoint variables at time t3. Suppose there is an impact 
at time t3, and accordingly a discontinuity in the values of the velocities 4(tS). The new values of the 
velocities at time ti are determined by formulae of type (1.7). Combining formulae of type (1.7) for 
the generalized velocities with the continuity conditions for the generalized coordinates at time t3, we 
obtain a relation, an interior-point condition [8], which we write as 

w(t;), x(tf)) = 0 (2.10) 

In the case of discontinuous phase coordinates, the variation of a functional of type (2.2) contains a 
term of the form (P(x(t& b”) - P(x(tT), b0))6t3; it reflects the variation of the t3. As a result of using 
Lagrange’s identity, in the variation of a functional of type (2.2) both terms reflecting the variation of 
t3 and terms of type (2.8) for tt occur. To guarantee that the sum 

@xl;; + (P(x(t& bO) - P(x(t& b0))6t3 = 0 (2.11) 

will vanish, we use an expression representing the condition for arrival at the constraint at which the 
impact occurs, 

aj(4(t3)) = RI(X(f3)) = O (2.12) 

as well as conditions (2.10). To do this, we expand expressions (2.10) and (2.12) 

4wf + W) = R,(&)) + Qwf) 

N(x(ti + 6t,), x(tf + St,)) = N(x(&), x(q) + aN 
-dx( t;> + 

aN 
-dx( t;> 

(2.13) 

w;) a-a;) 

and add to these equations the relation between the variations of the coordinates and the time t3 

W:) = 6x(g) + @3t,. (2.14) 

where 

i(r;) = f29 &> = fj 

Using relations (2.14) and (2.13), we can express 6t3 and &c(t;) in terms of hx(t:). Substituting the 
expressions obtained into Eq. (2.11) we conclude that the latter will surely be valid if the vector y(t;) 
satisfies the following system of 2n equations 

[( aN 
-Z(Q 6, aN ’ - - - 
a-et;) 4x46) a& I 

v(G) = 

0x(@, bO) - W(& bO) 
(2.15) 

= 
R&O;) 

RI, - ~0;) 
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41 q2 

Fig. 1 

The form of system (2.15) like that of (2.9) is convenient for integrating system (2.4) from right to 
left. 

Finally, the derivative of the functional with respect to the parameter b has the form 

af2 T 
t;+ 1 

x= jP,(t)dt + Z j ya;dt 

11 t : 

(2.16) 

where the variables w(t) satisfy the equation and boundary condition (2.4) as well as the jump conditions 
(2.9) and (2.15). 

Thus, the problem of computing the derivative of the functional (2.2) for a mechanical system with 
a variable set of active constraints is considered successively in subintervals with varied limits of 
integration. At the end-points of the subintervals, the adjoint variables y(t) satisfy jump conditions [17]. 
The case of a larger number of subintervals is considered in a similar way. 

3. EXAMPLE 

To illustrate the approach just proposed, we present a sensitivity analysis for a mechanical system [14] 
consisting of two carts connected by a spring (see Fig. 1). The left cart is also attached to a wall by a 
spring. In addition, the motion of the left cart is limited by an absolutely elastic stop, whose position 
corresponds to the undeformed state of the spring attaching that cart to the wall. 

Let e be the deviations of the carts from the positions characterized by the undeformed state of the 
springs, mj be the masses of the carts, kj be the stiffnesses of the springs (the subscriptj = 1 corresponds 
to the left cart and j = 2 to the right one), and h be the Lagrange multiplier corresponding to the 
unilateral constraint arising from the contact between the left cart and the stop. Then the equations 
of motion are 

m,ri’, = -k,q, -k,(q, - q2) + L m,& = -k,(q, - 41) 

The unilateral constraint corresponding to the stop situated at the point q1 = 0 guarantees that the 
coordinate q1 will be non-negative. Consequently, the reaction of the constraint is non-negative, that 
is, h 2 0. If q1 > 0, h = 0, if the left cart is not touching the stop, the reaction force of the constraint is 
zero. At times when q1 = 0 the system will experience the action of additional instantaneous forces. 
The equations of motion of the system are as follows: 

free motion 

mliil = -klql - Wql -q2L m&2 = -kdq2-q1) 
t, It IT, T+At<tIT (3.1) 

motion under the action of the constraint 

ml4 = -klql - k2(ql -qd + L m2ii2 = -k2(q2 - ql) 
TIt<z+At (3.2) 

where r is the time at which the left cart makes contact with the stop. The variation in the values of 
the velocities must be evaluated by formula (1.7) with e = 1. 
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As the functional whose sensitivity is to be analysed we take 

T 

n = j(tj;+cj:)dr (3.3) 
‘I 

This quantity characterizes the velocity of the system in the interval of motion. We shall analyse the 
sensitivity of the functional (3.3) to the constants ki and k2 of the springs. Since the integrand in (3.3) 
does not depend on these parameters, the derivative of the functional R has the form 

The variables fr and f2 correspond to the equations of free motion in the intervals [ti, r) and [z, T], 
respectively, and the vector w is a solution of the adjoint system (2.4). At time r the velocity vector and 
the vector of adjoint variables experience a discontinuity. Recall the formula for the re-evaluation of 
the velocities has the form (1.7) e = 1. After obvious reduction, we obtain 

Thus, after impact against the absolutely elastic obstacle at the point q1 = 0, the velocity of the left 
cart changes sign, but the velocity of the right cart remains unchanged. To evaluate the values of the 
adjoint variables that satisfy the jump conditions, one has to use formula (2.15). 

The sensitivity analysis was carried out for parameter values ml = m2 = 1, the system being considered 
in the time interval [0,2]. The initial data were taken to be 

41(O) = 1, 41(O) = 1, q*(O) = 2, 42(O) = 0 

The quantities kl and k2 were chosen on a section of the straight line 

(2.5, 2.5)T + a( 1, l)r, a E [0,0.4] 

with stepsize 0.1 in a. The results of the computations are shown below. 

k, = k2 2.5 2.6 2.1 2.8 2.9 

R 5.962 6.213 6.438 6.639 6.819 
awak, 1.585 1.687 1.790 1.888 1.974 
awak, 0.926 0.919 0.912 0.905 0.897 
-Mx103 0.1 36 69 102 
-(M/R)X 103 - 0.01 6 10 15 

It can be seen that positivity of the sensitivity coefficients corresponds to an increase in the values 
of Q. The first sensitivity coefficient is greater than the second for all values of kl and kZ, since &2/tlkl 
corresponds to the left cart, which collides with the stop. At the same time, as the values of kl and k2 
increase, so do the values of iWak,, but those of &Wfk2 decrease. We also list in the table scaled values 
of the errors in the computed quantities AL2 x 103, that is, the differences between the computed values 
of Q and the values obtained by linear approximation using the sensitivity coefficients, namely. 

In the last row we give the scaled relative errors, that is, the quantities (AL\n/Q) x 103, which may be 
regarded as relative error estimates for the method. Since their values do not exceed 2%, the evaluation 
of the method is positive. 

Thus, the approach proposed here enables as to estimate the directions of increase (or decrease) of 
an index characterizing the motion of the system in the time interval when the parameter values are 
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changed. In addition, the values of the sensitivity coefficients indicate the relative contribution of changes 
in the values of the parameters to the change in the value of (3.3). This approach can be utilized to 
analyse certain aspects of the motion of systems of the cyclic automation and vibro-elastic systems. The 
enables one to obtain well-founded estimates for the motion of such systems taking collisions into 
account, and also to estimate the influence of measurement errors in the motion of these systems, that 
is, to make fuller use of the reserves of kinematic schemes according to a selected performance index. 
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